A Look at the Most-Missed Items on the GED[®] Mathematical Reasoning Test

Florida IPDAE Workshop – 12/11//2014

Trainer

Bonnie Goonen - bv73008@aol.com

Workshop Guide Institute for the Professional Development of Adult Educators

Math Translation Guide	5
Common Misconceptions	6
More Misconceptions	7
Best Practices Review	8
Math Websites	10

Note: These materials may be used and reproduced for educational purposes.

Algebraic Sugar Cane

10 factories produce sugar cane. The second produced twice as much as the first. The third and fourth each produced 80 more than the first. The fifth produced twice as much as the second. The sixth produced 40 more than the fifth. The seventh and eighth each produced 40 less than the fifth. The ninth produced 80 more than the second. The tenth produced nothing due to drought in Australia. If the sum of the production equaled 11,700, how much sugar cane did the first factory produce?

2014 GED® Test Analysis of Most Missed Items for Mathematical Reasoning Test

Content, Group 1: Quantitative Reasoning

Indicator	Description		
Q.4.b	Compute the area and circumference of circles. Find the radius or		
	diameter of a circle when given the area or circumference.		
Q.4.c	Compute the perimeter and area of polygons. Find side lengths of a		
	polygon when given the perimeter or area.		
Q.4.d.	Compute the perimeter and area of two-dimensional composite		
	shapes, which could include circles.		

Content, Group 2: Algebraic Reasoning

Indicator	Description
A.5.a	Locate points in the coordinate plane.
A.5.b	Determine the slope of a line from a graph, equation, or table.
A.5.d	Graph two-variable linear equations.

Content, Group 3: Quantitative Reasoning

Indicator	Description
Q.3.b	Use scale factors to determine the magnitude of a size change.
	Convert between actual drawings and scale drawings.
Q.3.d	Solve two-step, arithmetic, real world problems involving percents. Examples include but are not limited to: simple interest, tax, markups and markdowns, gratuities and commissions, percent increase and decrease.

Mathematical Practice and Content Interaction, Group 4: Search for and recognize entry points for solving a problem and Algebraic Reasoning

Indicator	Description
A.2.a	Solve one-variable linear equations, and formulas with multiple variables.
A.3.a	Solve linear inequalities in one variable.
A.4.a	Solve one-variable quadratic equations with real solutions, using any appropriate method.

Mathematical Practice and Content Interaction, Group 5: Create algebraic models that represent real-world situations and Algebraic Reasoning

Indicator	Description
A.1.c	Create linear expressions as part of word-to-symbol translations or to represent situations you have been given.
A.2.c	Create one-or two-variable linear equations to represent situations you have been given.
A.3.d	Create one-variable linear inequalities to represent situations you have been given.

More Tangrams

How many different lengths?

If the area is

Math Translation Guide

The chart below gives you some of the terms that come up in a lot of word problems. Use them in order to translate or "set-up" word problems into equations.

English	Math	Example	Translation
What, a number	x, n,	Three more than a number is	<i>n</i> + 3 = 8
Equivalent.	=	Danny is 16 years old.	<i>d</i> = 16
equals, is, was,		A CD costs 15 dollars.	<i>c</i> = 15
has, costs			
Is greater than	>	Jenny has more money than	j > b
Is less than	<	Ben.	a < n
At least,	\geq	Ashley's age is less than	$t \geq 30$
Minimum At most	\leq	NICK'S.	
ALMOSI,		questions on the test	s ≤ 15
maximum		Sam can invite a maximum	
		of 15 people to his party.	
More, more than,	+	Kecia has 2 more video	<i>k</i> = <i>j</i> + 2
greater, than,		games than John.	k + j = 11
added to, total,		Kecia and John have a total	
sum, increased		of 11 video games.	
by, together		lagan has 2 forwar ODs than	.
Less than,	-	Caroon	J = C - 3
decreased by		The difference between	J - D = 75
difference, fewer		Jenny's and Ben's savings is	
		\$75.	
Of, times,	х	Emma has twice as many	e = 2 x j
product of, twice,		books as Justin.	or
double, triple,			e = 2j
half of, quarter of			:
		Justin nas nait as many	$J = C X \frac{1}{2}$
		books as Emma.	$i - \rho/2$
			J = 0/2
Divided by, per,	÷	Sophia has \$1 for every \$2	$s = d \div 2$
for, out of, ratio		Daniel has.	or
of to			s = d/2
		The ratio of Daniel's savings	
		to Sophia's savings is 2 to 1.	d/s = 2/1

Example

Jennifer has 10 fewer DVDs than Brad. Step 1: j (has) = b (fewer) – 10 Remember, the word "has" is an equal sign and the word "fewer" is a minus sign, so: Step 2: j = b - 10

Common Misconceptions

Areas of Difficulty Examples of Misconceptions The Meaning of Letters 1. 1.1 Ignoring completely If I add 3 to x + 4 I get 7. the presence of letters. 1.2 Not distinguishing 8 m and 8m are the same. between letters used as units of measure and as variables. Shirts cost s dollars each and 1.3 Treating letters as pants cost p dollars a pair. If I objects. buy 3 shirts and 2 pairs of pants, what does 3s + 2p represent? 3 shirts and 2 pairs of pants. c = 3 because c is the 3rd letter 1.4 Believing there are of the alphabet. y = 4 because rules used to in the previous questions y was 4. determine which number a letter stands for. What can you say about p if 1.5 Thinking that letters p + q = 12 and p is a natural always have one number greater than q? specific value. p = 7 a + b cannot equal a + c.

- Thinking that different letters always represent different numbers.
- Thinking that letters can only stand for natural numbers.

6x = 13, then x = 2

More Misconceptions

Areas of Difficulty

Examples of Misconceptions

- 2. Misconceptions about Notation
 - 2.1 Combining letters and numbers incorrectly because they think that operation symbols cannot be part of an answer.
 - Neglecting to use brackets when needed.

3. Misconceptions about Generalizations

- 3.1 Not understanding that a generalization is essentially a statement of a method.
- 3.2 Inability to generalise because of a lack of understanding of arithmetic operations.
- 3.3 Inability to generalize because the student is unable to define the methods s/he has used.
- 4. Misapplication of Rules
 - 4.1 Disregarding signs when manipulating expressions.

 $\begin{pmatrix} "P = 2l + 2w" & describes a \\ method for finding the \\ perimeter of a rectangle with \\ length, l, and width, w. \end{pmatrix}$

21 + 2w can't be an answer because there is still addition to do.

x + y = y + x (It doesn't matter which way you write it because you always divide the larger number by the smaller number.)

Best Practices Review

Instructional	Recommended Practices		
Element			
Design	Ensure mathematics curriculum is based on		
Design			
	Ensure curriculum is standards based		
	Clearly identify skills, concepts and knowledge to be		
	mastered		
	Ensure that the mathematics curriculum is vertically		
	and horizontally articulated		
Professional	Provide professional development which focuses on:		
Development	 Knowing/understanding standards 		
for leachers	 Using standards as a basis for instructional 		
	planning		
	 Teaching using best practices 		
	 Multiple approaches to assessment 		
	Develop/provide instructional support materials such		
	as curriculum maps and pacing guides and provide		
	math coaches		
Technology	Provide professional development on the use of		
	instructional technology tools		
	• Provide student access to a variety of technology tools		
	• Integrate the use of technology across all mathematics		
	curricula		
Manipulatives	Use manipulatives to develop understanding of		
	mathematical concepts		
	Use manipulatives to demonstrate word problems		
	• Ensure use of manipulatives is aligned with underlying		
	math concepts		
Instructional	Focus lessons on specific concept/skills that are		
Strategies	standards based		
	Differentiate instruction through flexible grouping,		
	individualizing lessons, compacting, using tiered		
	assignments, and varying guestion levels		
	Ensure that instructional activities are learner-centered		
	and emphasize inquirv/problem-solving		
	Use experience and prior knowledge as a basis for		
	building new knowledge		
	Use cooperative learning strategies and make real life		
	connections		
	Use scaffolding to make connections to concepts,		

	 procedures and understanding Ask probing questions which require students to justify their responses Emphasize the development of basic computational skills
Assessment	 Ensure assessment strategies are aligned with standards/concepts Evaluate both student progress/performance and teacher effectiveness Utilize student self-monitoring techniques Provide guided practice with feedback Conduct error analyses of student work Utilize both traditional and alternative assessment strategies Ensure the inclusion of diagnostic, formative and summative strategies Increase use of open-ended assessment techniques

Math Websites

Annenberg Learner. Courses of study in such areas as algebra, geometry, and real-world mathematics. The Annenberg Foundation provides numerous professional development activities or just the opportunity to review information in specific areas of study. <u>http://www.learner.org/index.html</u>

Common Core Conversation. Links to math sites for use with all levels of mathematical standards. <u>http://www.commoncoreconversation.com/math-resources.html#sthash.Dznxgkbn.dpbs</u>

Free Resources for Educational Excellence. Teaching and learning resources from a variety of federal agencies. This portal provides access to free resources. <u>http://free.ed.gov/index.cfm</u>

Get the Math. How algebra is used in real-world situations. <u>http://www.thirteen.org/get-the-math/</u>

Illuminations. Great lesson plans for all areas of mathematics at all levels from the National Council of Teachers of Mathematics (NCTM). <u>http://illuminations.nctm.org</u>

Inside Mathematics. <u>A</u> professional resource for educators, including classroom examples of innovative teaching methods and insights into student learning. <u>http://insidemathematics.org/index.php/home</u>

Key Elements to Algebra Success 46 lessons, homework assignments, and videos. <u>http://ntnmath.keasmath.com/</u>

Khan Academy. A library of over <u>2,600 videos</u> covering everything from arithmetic to physics, finance, and history and <u>211 practice exercises.</u> <u>http://www.khanacademy.org/</u>

The Math Dude. A full video curriculum for the basics of algebra. <u>http://www.montgomeryschoolsmd.org/departments/itv/MathDude/MD_Downlo</u> <u>ads.shtm</u>

Math in the News. Media4Math. This site provides you with information/articles of how math is used in the real world. http://www.media4math.com/MathInTheNews.asp

Media4Math. This site provides you with information/articles of how math is used in the real world. <u>http://www.media4math.com/MathInTheNews.asp</u>

Math Planet._Math Planet is a dedicated web site to the advancement of mathematics. <u>http://library.thinkquest.org/16284/index_s.htm</u>

Geometry Center. (University of Minnesota). This site is filled with information and activities for different levels of geometry.<u>http://www.geom.uiuc.edu/</u>

Online Resources for Teaching and Strengthening Fundamental, Quantitative, Mathematical, and Statistical Skills. NICHE. A wide array of resources for the different types of mathematical skills. http://serc.carleton.edu/NICHE/teaching_materials_qr.html#partone

National Library of Virtual Manipulatives for Math - All types of virtual manipulatives or can be purchased as a dvd. This is a great site for students who need to see the "why" of math. <u>http://nlvm.usu.edu/en/nav/index.html</u>

PBS Teacher Source. Lesson plans and lots of activities are included in the teacher section of PBS. <u>http://www.pbs.org/teachers</u>

Real-World Math. Ideas for how math is used in today's world. <u>http://www.realworldmath.org/</u>

Teacher Guide for the TI-30XS MultiView™ Calculator – A guide to assist you in using the new calculator, along with a variety of lesson plans for the classroom.

http://education.ti.com/en/us/guidebook/details/en/62522EB25D284112819FD B8A46F90740/30x_mv_tg

http://education.ti.com/calculators/downloads/US/Activities/Search/Subject?s= 5022&d=1009

TES. With more than 2.3 million registered online users in over 270 countries and territories, TES provides a wealth of free resources in all academic areas. <u>http://www.tes.co.uk/</u>

Working with Algebra Tiles. An online workshop that provides the basics of using algebra tiles in the classroom. http://mathbits.com/MathBits/AlgebraTiles/AlgebraTiles.htm

Stay in Touch!

- Florida IPDAE <u>http://floridaipdae.org/</u>
- Florida GED[®] 2014 Preparation Program Frameworks <u>http://www.fldoe.org/workforce/dwdframe/ad_frame.asp</u>
- GED Testing Service[®] <u>www.GEDtestingservice.com</u>