

Module: Mathematics

Lesson Title: Make That Shot!

Standards for the Lesson

Florida Adult Basic Education Mathematics Standards					
Develop an understanding of ratio concepts and use ratio reasoning to solve problems. (CCR.MA.8.3.1)					
Develop an understanding of statistical variability. (CCR.MA.9.3.1)					
Summarize and describe distributions. (CCR.MA.9.4.1)					

Interpreting the Standards

1 Standards	2 Skills Included in the Standard	3 Concepts Included in the	4 Through a Particular	5 Cognitive Demand/Levels	6 Sample Activity
Develop an understanding of ratio concepts and	understand	Standard ratio concepts	Context Real-world statistical documents	of Thinking DOK 2	Have students determine how to figure the percentage
use ratio reasoning to	use	ratio reasoning		DOK 2	correct of something.
solve problems. (CCR.MA.8.3.1)	solve	problems		DOK 2	Have students use mean, median, and
Develop an understanding of statistical variability. (CCR.MA.9.3.1)	understand	statistical variability		DOK 2	mode to calculate their favorite team's statistics.
Summarize and describe distributions. (CCR.MA.9.4.1)	summarize and describe	distributions		DOK 3	

Objectives of the Lesson

Students will:

- Use class data to calculate percentages
- Participate in a group activity
- Relate activity to NBA stats

• Calculate selected percentages for NBA Finals data

Materials

- Waste baskets
- Waste basket liners
- Official "paper toss" paper
- Handout A: NBA Player Free-Throw Shooting Statistics 2014-15
- Handout B: Data Worksheet
- Handout C: Mean, Median, Mode
- Sports pages from local newspapers or sports magazines with team or individual statistics

Instructional Plan

Overview

This lesson focuses on the area of statistics and how to calculate percentages in real-world situations. Students will also understand the differences between mean, median, and mode and how to calculate each type of statistic.

Process

Introduce the lesson by asking students the following questions:

- How many of you watch NBA basketball or another professional sport?
- How many of you read the various statistics in the newspapers on certain players or teams?
- How are those statistics used?

Show students a copy of a newspaper page that includes statistics for a sport. If you do not have access to newspaper stats, you may wish to access the Internet NBA Stats at: <u>http://stats.nba.com/</u> or ESPN Stats at: <u>http://espn.go.com/nba/statistics</u> for an overview. Or you may wish to use **Handout A: NBA Player Free-Throw Shooting Statistics - 2014-15.** Discuss the different types of statistics that are calculated and why they are important.

Share with students that they are going to calculate their own free-throw percentage and see who has the best percentage individually and by team.

Before you divide the group into teams, review with students how to calculate percentage. You will want to model the process for students and then have them calculate a percentage to ensure that they have mastered the skill.

Share with students that: Percent means "per hundred." Writing a number as a percent is a way of comparing the number with 100. Percents are really fractions (or ratios) with a denominator of 100. Any percent may be changed to an equivalent fraction by dropping the percent symbol and writing the number over 100. For example: 42% = 42 parts of 100, which can also be written as 42/100.

Have students look at the free throw percentages on **Handout A: NBA Player Free-Throw Shooting Statistics** - **2014-15.** Ask students how many free throws a specific player would have made if he attempted 100 throws. For example, Chris Paul would have made 90 free throws out of 100 attempted throws.

Divide the students into small groups of 3-4 students. Have students complete the following activities, documenting their data on **Handout B: Data Worksheet.** When they have completed Activity 1 and 2, have them calculate individual and team percentages for eighteen shots and determine who had the best free-throw average. Have students share their results with the class.

Activity 1:

- Place baskets 8-9 ft. from a marked foul line.
- Select groups.
- Have each student first practice by throwing a paper ball at the basket three times.
- Now it's time for the competition. Have each team member throw a paper ball at the basket ten times.
- Have each team record the number of hits per team member within the group. A hit occurs when the paper ball goes into the basket. Each team should record their data using **Handout B: Data Worksheet**.
- Have each team calculate individual and team percentages for the ten shots.
- Have teams share their information with the other teams. Check for accuracy.

Activity 2:

- Review or demonstrate how to calculate percentage for eight shots.
- Have each team member throw a paper ball at the basket eight times.
- Have each team record the number of hits per team member within the group. A hit occurs when the paper ball goes into the basket. Each team should record their data using **Handout B: Data Worksheet**.
- Have each team calculate individual and team percentages for the eight shots.
- Have teams share their information with the other teams. Check for accuracy.

Activity 3:

- Have each team combine the number of hits per person for ten shots and eight shots and calculate both individual and team percentages for eighteen shots.
- Determine the highest individual and team percentages.

Sample Debriefing Questions

- 1. Why are statistics important?
- 2. What is mean? Median? Mode?
- 3. How are statistics used in the world of sports?
- 4. How do you use statistics in your daily life?
- 5. Do statistics always tell the real story?

Modifications for Different Levels

To provide more rigorous practice, have students calculate the median and mode for each team member and the team as a whole. Before they complete the activity, model for students how to calculate median and mode using the **Handout C: Mean, Median, Mode** and one example from a team member's chart. Have students provide a summary report of the mode, median, and mean scores for their team. Have them then graph the average scores from each team using an appropriate graph format.

At the beginning levels of ABE Mathematics, provide students with calculators to assist them in determining percentages or averages. Teach them the steps for determining percentage by modeling the process and then having them practice the steps before they complete the activity.

Handout A: NBA Player Free-Throw Shooting Statistics - 2014-15

Retrieved from the World Wide Web at: <u>http://espn.go.com/nba/statistics/player/_/stat/free-throws/sort/freeThrowPct</u>

Free	e Throw Percentage Leaders - (Qualified							
					PER GAME		TOTAL		
RK	PLAYER	TEAM	GP	PPG	<u>FTM</u>	<u>FTA</u>	<u>FTM</u>	<u>FTA</u>	<u>FT%</u>
1	Stephen Curry, PG	GS	80	23.8	3.9	4.2	308	337	.914
2	Jodie Meeks, SG	DET	60	11.1	2.4	2.7	145	160	.906
3	J.J. Redick, SG	LAC	78	16.4	2.3	2.6	183	203	.90
4	Jamal Crawford, SG	LAC	64	15.8	3.5	3.9	227	252	.90
5	Chris Paul, PG	LAC	82	19.1	3.5	3.9	289	321	.90
6	Danilo Gallinari, SF	DEN	59	12.4	2.9	3.2	171	191	.89
7	Nick Young, SF	LAL	42	13.4	3.1	3.5	132	148	.89
8	Dirk Nowitzki, PF	DAL	77	17.3	3.3	3.8	255	289	.88
9	Jarrett Jack, PG	BKN	80	12.0	2.5	2.8	200	227	.88
10	Kevin Martin, SG	MIN	39	20.0	4.4	4.9	170	193	.88
					PER G/	AME	TOTA	L	
RK	PLAYER	TEAM	<u>GP</u>	PPG	<u>FTM</u>	<u>FTA</u>	<u>FTM</u>	<u>FTA</u>	<u>FT%</u>
11	Klay Thompson, SG	GS	77	21.7	2.9	3.3	225	256	.87
12	Brandon Knight, PG	MIL/PHX	63	17.0	3.1	3.5	195	223	.874
13	Mo Williams, PG	MIN/CHA	68	14.2	2.4	2.8	163	187	.87
14	D.J. Augustin, PG	DET/OKC	82	9.5	2.2	2.5	178	205	.86
15	Isaiah Thomas, PG	BOS/PHX	67	16.4	4.5	5.2	302	348	.86
16	James Harden, SG	HOU	81	27.4	8.8	10.2	715	824	.86
17	Damian Lillard, PG	POR	82	21.0	4.2	4.9	344	398	.864
18	Kyrie Irving, PG	CLE	75	21.7	4.2	4.9	315	365	.863
19	Jeff Teague, PG	ATL	73	15.9	3.8	4.4	275	319	.86
20	Louis Williams, SG	TOR	80	15.5	4.3	4.9	340	395	.86

Handout B: Data Worksheet

Calculate the free throw percentage. To do so, divide the number of free throws made by the number of free throws attempted. You will then need to transform that number into a percentage by moving the decimal point two places to the right. It's also customary to round free throw percentage of to the nearest tenth of a percentage.

Trial 1 – 10 shots per team member

Name of Team Member	Free Throws Attempted	Free Throws Made	Free Throw Percentage

Our team's free throw percentage is: _____

Trial 2 – 8 shots per team member

Name of Team Member	Free Throws	Free Throws Made	Free Throw
	Attempted		Percentage

Our team's free throw percentage is: ______

Putting It All Together

The member on our team with the best overall free throw average is ______

with an average of _____

Our team's overall free throw percentage is: ______

Handout C: Mean, Median, Mode

The mean, median, and mode are types of averages. The table below shows how to calculate the mean, median, and mode for two sets of data. Set A contains the numbers 2, 2, 3, 5, 5, 7, 8 and Set B contains the numbers 2, 3, 3, 4, 6, 7.

Measure	Set A	Set B		
	2, 2, 3, 5, 5, 7, 8	2, 3, 3, 4, 6, 7		
Mean	Adding the numbers up gives:	Adding the numbers up gives:		
To find the mean, you need to add up all the data, and then divide	2 + 2 + 3 + 5 + 5 + 7 + 8 = 32	2 + 3 + 3 + 4 + 6 + 7 = 25		
this total by the number of values	There are 7 values, so you divide	There are 6 values, so you divide		
in the data.	the total by 7: 32 ÷ 7 = 4.57	the total by 6: 25 ÷ 7 = 4.166		
	So, the mean is 4.56 (rounded to	So, the mean is 4.17 (rounded to		
	two decimal points)	two decimal points)		
Median	The numbers in order:	The numbers in order:		
To find the median, you need to put the values in order and then	2, 2, 3, (5), 5, 7, 8	2, 3, (3, 4), 6, 7		
find the middle value. If there are	The middle value is marked in	This time there are two values in		
two values in the middle, then you	brackets, and it is 4.	the middle. They have put in		
find the mean of these two values.		brackets. The median is found by		
	So the median is 5.	calculating the mean of these two		
		values: (3 + 4) ÷2 = 3.5		
		So the median is 3.5.		
Mode	The data values are:	The data values are:		
The mode is the value which	<u>2, 2</u> , 3, <u>5, 5</u> , 7, 8	2, <u>3, 3,</u> 4, 6, 7		
appears the most often in the				
data. It is possible to have more	The values which appear most	The value which appears most		
than one mode if there is more	often are 2 and 5. They both	often is. They both appear more		
than one value which appears the	appear more times than any of the	times than any of the other data		
most.	other data values.	values.		
	So, the modes are 2 and 5.	So, the mode is 3.		