Introduction to Higher-Order Algebra for Level 1 and Level 2 Students Resources 1 ### **Table of Contents** | The Magic of Algebra | 3 | |--|-----| | Algebra Tile Template | | | | | | Algebra Tile Mat | . 5 | | High Impact Indicators – Algebraic Reasoning | . 6 | | Symbols and Vocabulary for Inequalities | 7 | | Inequality Key Words and Symbols | 8 | | Vocabulary | . 9 | | Linear, Quadratic, and Exponential Function Graphs | .10 | | Resources from the World Wide Web | .11 | [©] Copyright 2018 GED Testing Service LLC. All rights reserved. GED® and GED Testing Service® are registered trademarks of the American Council on Education (ACE). They may not be used or reproduced without the express written permission of ACE or GED Testing Service. The GED® and GED Testing Service® brands are administered by GED Testing Service LLC under license from the American Council on Education. ### The Magic of Algebra ### Algebra Magic 1 - Think of a number between 1 and 100. - Multiply your number by 4. - Add 12. - Multiply this number by 2. - Add 16. - Divide this number by 8. - Subtract your original number. Can you show that algebraically? ### Algebra Magic 2 - Think of any number. - Multiply the number by 2. - Add 4. - Multiply by 3. - Divide by 6. - Subtract the number with which you started. Explain with algebra why this works. ### Algebra Tile Template | Algebra | Tile | Mat | |---------|------|-----| |---------|------|-----| | Х | | |---|--| ## High Impact Indicators – Algebraic Reasoning | | Algebraic Reasoning | | |--|--|--| | Assessment Target | Indicators | What to look for in student work: The student can | | A.3 Write,
manipulate, solve,
and graph linear
inequalities | A.3.a Solve linear inequalities in one variable with rational number coefficients. A.3.b Identify or graph the solution to a one variable linear inequality on a number line. A.3.c Solve real-world problems involving inequalities. A.3.d Write linear inequalities in one variable to represent context. | solve inequalities in one variable, using the standard algorithms. solve a one-variable inequality and identified or created a graph on the number line of the solution . analyze the relationship between quantities in a realworld problem, and then create an inequality to model the problem situation. analyze the relationship between quantities in a realworld problem, and then solve the problem through algebraic reasoning. | | A.7 Compare, represent, and evaluate functions | A.7.a Compare two different proportional relationships represented in different ways. Examples include but are not limited to: compare a distance-time graph to a distance-time equation to determine which of two moving objects has a greater speed. A.7.b Represent or identify a function in a table or graph as having exactly one output (one element in the range) for each input (each element in the domain). A.7.c Evaluate linear and quadratic functions for values in their domain when represented using function notation. A.7.d Compare properties of two linear or quadratic functions each represented in a different way (algebraically, numerically in tables, graphically or by verbal descriptions). Examples include but are not limited to: given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of | identify functions and nonfunctions displayed in graphs and tables, and create functions (graphs/tables). substitute values for variables in functions and evaluate the resulting numerical expressions. convert functional representations from one from to another, and compare properties of the functions. | # Symbols and Vocabulary for Inequalities | Notation or Vocabulary | Definition | | |------------------------|--|--| | a > b | a is more than b | | | a≥b | a is at least b | | | a < b | a is less than b | | | a≤b | a is at most b or a is no more than b | | | a ≠ b | a is not equal to b | | | ∞ | Symbol for positive infinity – an abstract concept describing something without any bound or larger than any number. | | | Boundary point | A solution that makes the inequality true | | | Coefficient | 4a > b – the number associated with the variable | | | Inclusive | a \leq 6 – includes the number and is indicated on the number line with a closed circle | | | Exclusive | A < 6 – excludes the number and is indicated on the number line with an open circle | | | Solution Set | The range of values that make the inequality true | | # Inequality Key Words and Symbols | Symbol | Meaning | Associated Words | | |--------|--------------------------|------------------|--| | Æ | | | | | Symbol | | | | | ≥ | Greater than or equal to | No less than | | | | | At least | | | | | Minimum | | | ≤ | Less than or equal to | No more than | | | | | At most | | | | | Maximum | | | > | Greater than | More than | | | | | Greater than | | | < | Less than | Less than | | | | | Fewer than | | | = | Equal to/Equals | The same as | | | | | Is equal to | | | | | • equals | | ## Vocabulary | domain | the set of input values or x-values of a function | | |-------------------------|--|--| | function | a relationship between variables that has one output for each and every input | | | linear
function | a function in which the highest power associated with the independent variable is 1 | | | linear
function | a function that is represented by a line when graphed on a Cartesian plane | | | range | the set of output values or y-values of a function | | | slope | a ratio of the rate at which the dependent variable is changing versus the rate at which the independent variable is changing; frequently expressed as $\frac{\text{rise}}{\text{run}}$, or $\frac{\text{change in }y}{\text{change in }x}$ | | | y-intercept | the point on the y-axis at which a function crosses the y-axis | | | slope-intercept
form | the form $y = mx + b$ of a linear equation, where m represents the slope of the line and b represents its y -intercept | | | absolute value | the distance a number is from zero on a number line; the value of a number ignoring its sign (+ or -) | | | origin | the point of intersection of the x-axis and y-axis on a Cartesian plane | | | Cartesian plane | a plane which has a horizontal line (x axis) and a vertical line (y axis), also known as a coordinate plane or grid | | | | | | ## Linear, Quadratic, and Exponential Function Graphs | Type of Function | Linear | Quadratic | Exponential | |---|---|---|---| | Description | Straight line | U Shape (parabola) that opens up or down | Grows/Shrinks fast and levels off on 1 side | | Graph | 4 y 3 3 4 x 1 1 2 3 4 x 1 1 2 3 4 x 1 4 1 1 2 3 4 x 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40
30
y 20
10
-4 -2 2 2 4 | V=2X6-
5-
4-
3-
2-
1 2 3 | | Equation | f(x) = ax + b or f(x) = a | $f(x) = ax^2 + bx + c$ | $f(x) = a^x$ | | How to tell from
the equation
what the graph
looks like: | The x term is to the first power (x) | The x term is to the second power (x²) | The x term is the exponent (2x) | | Graph specific information: | In the equation y = mx + b, if m is negative, the line decreases (goes down) as we look from left to right: y = - x + 5 | If the number with the x² is negative, the U shape opens down. If the number with the x² is positive, the U shape opens up: | In the equation y = a ^x , if a is larger than 1 the curve will grow fast. If a is between 0 and 1, the curve will shrink fast. | | | If m is positive, the line increases (goes up) as we look from left to right: y = .5x + 2 | Ty ty x | Decay y=a y=a ocacl | | | 7 050 2 | | Growth y=ax | Steve Schmidt, Appalachian State University ### Resources from the World Wide Web The following are resources referenced in the workshop, as well as additional sites that expand the information. ### Algebra Tiles Working With Algebra Tiles - MathBits http://mathbits.com/MathBits/AlgebraTiles/AlgebraTiles.htm Factoring Polynomials Using Algebra Tiles - Del Mar College http://dmc122011.delmar.edu/math/MLC/QEPMathSeminars/FactoringTrinomialsAlgebraTilesStuden tActivity.pdf Multiplying Polynomials Using Algebra Tiles – Virginia Dept. of Education http://www.doe.virginia.gov/testing/solsearch/sol/math/A/m ess a-2b 2.pdf Illuminations (National Council for Teachers of Math) http://illuminations.nctm.org/activity.aspx?id=3482 Michigan Virtual University http://media.mivu.org/mvu_pd/a4a/homework/index.html **National Library of Virtual Manipulatives** http://nlvm.usu.edu/en/nav/vlibrary.html ### Inequalities How to Graph Inequalities for Middle School: Fractions & Other Math Tips https://www.youtube.com/watch?v=PTDN-ApjzsM How to Solve Inequalities https://www.youtube.com/watch?v=wYEYeFGxHkI&t=57s One-Variable Inequalities – Khan Academy https://www.khanacademy.org/math/algebra/one-variable-linear-inequalities Virtual Nerds: What is an Inequality? https://www.youtube.com/watch?v=wcBwdz-ZBaM Math is Fun – Solving Inequalities http://www.mathsisfun.com/algebra/inequality-solving.html Very Basics of Graphing Inequalities (on a number line) https://www.youtube.com/watch?v=nif2PKA9bXA Solving and Graphing Inequalities (Excellent!) https://www.youtube.com/watch?v=EE2qWIyjKD0 Math Dude Unit 1-4 -Solving Inequalities https://www.voutube.com/watch?v=8hhewFQ K0w Solving Linear Inequalities - Event Planning www.floridaipdae.org/index.cfm?fuseaction=resources.GEDAHS&cagiid=35103C4421814CCDCF2BF60B532270EE0718F330D6DCACE4E33EFA989573B6E6 Florida IPDAE – GED and AHS Lessons Beginning Algebra - Lessons 14-15 http://www.floridaipdae.org/index.cfm?fuseaction=resources.GEDAHS&cagiid=DA077C783C76A85D93EE670F44851D4C70E44B31245B6D1B60A314A7FABD6FAE Inequalities in the Real-World https://betterlesson.com/lesson/592219/inequalities-in-the-real-world Inequalities - Solving and Graphing http://alex.state.al.us/lesson_view.php?id=29038 #### **Functions** Patterns, Functions, and Algebra - Annenberg Learner https://www.learner.org/courses/learningmath/algebra/ Math in Practice Series from NCTM: Putting Essential Understanding of Functions into Practice - Robert Ronau, Dan Meyer, Terry Crites Using a Lottery to Illustrate Functions - The Teaching Channel https://www.teachingchannel.org/videos/teaching- functions?utm source=Alpha+List&utm campaign=17fa2b7690- Speeding Along – A Lesson Plan from Florida IPDAE http://www.floridaipdae.org/index.cfm?fuseaction=resources.GEDAHS&cagiid=A37BC967EEFD18737E7AC2AF2D8421DD4A11C694934330A61EB65F4EB10E766B Functions – Khan Academy https://www.khanacademy.org/math/algebra/algebra-functions What is a function? https://www.youtube.com/watch?v=ryQJa8ybxVY Math is Fun https://www.mathsisfun.com/sets/function.html Virtual Nerd http://www.virtualnerd.com/algebra-1/all/ Illuminations https://illuminations.nctm.org/ Algebraic Functions and Modeling – Steve Schmidt, Appalachian State https://abspd.appstate.edu/node/385 Linear Equations, Functions, and Graphs – Khan Academy https://www.khanacademy.org/math/algebra-home/alg-linear-eq-func Beginning Algebra - IPDAE ### http://www.floridaipdae.org/index.cfm?fuseaction=resources.GEDAHS&cagiid=DA077C783C76A85 D93EE670F44851D4C70E44B31245B6D1B60A314A7FABD6FAE What Are Functions? - Math Antics https://www.youtube.com/watch?v=52tpYl2tTqk **Insights Into Algebra 1** – The Annenberg Learner https://www.learner.org/workshops/algebra/index.html #### Properties of Functions - The Math Dude http://www.montgomeryschoolsmd.org/departments/itv/MathDude/watch-online.aspx?id=31 #### **Exponential Functions and Quadratic Functions – Khan Academy** https://www.khanacademy.org/math/algebra/introduction-to-exponential-functionshttps://www.khanacademy.org/math/algebra/quadratics#features-of-quadratic-functions #### **Inside Mathematics** http://www.insidemathematics.org/common-core-resources/mathematical-content-standards/standards-by-grade/high-school-functions #### Stay in Touch - GED Testing Service® https://ged.com/ - Twitter at @GEDTesting® https://twitter.com/gedtesting - GED® Facebook https://www.facebook.com/GEDTesting - YouTube channel https://www.youtube.com/user/GEDTestingService